题库丨小学奥数关于相遇问题大全附答案解析
点击领取>>>1-6年级奥数知识点讲解、讲义及奥数竞赛真题、初高中数学竞赛真题
相遇问题大全及答案
1、
甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
答案与解析:想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
解:4×2÷4
=8÷4
=2(千米)
答:甲每小时比乙快2千米。
2、
一条单线铁路上有A,B,C,D,E5个车站,它们之间的路程如图所示(单位:千米).两列火车同时从A,E两站相对开出,从A站开出的每小时行60千米,从E站开出的每小时行50千米.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分钟?
答案与解析:
两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.
从图中可知,AE的距离是:225+25+15+230=495(千米)
两车相遇所用的时间是:495÷(60+50)=4.5(小时)
相遇处距A站的距离是:60×4.5=270(千米)
而A,D两站的距离为:225+25+15=265(千米)
由于270千米>265千米,从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.
因为相遇处离D站距离为270-265=5(千米),那么,先到达D站的火车至少需要等待:(小时),小时=11分钟
3、
甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
答案与解析:想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。
解:(240+264)÷(20+16)
=504÷30
=14(秒)
答:从两车头相遇到两车尾相离,需要14秒。
4、
有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
答案与解析:想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。
解:600÷(400-300)
=600÷100
=6(分)
答:经过6分钟两人第一次相遇
5、
列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?
答案与解析:列车的速度是(250-210)÷(25-23)=20(米/秒),列车的车身长:20×25-250=250(米).列车与货车从相遇到相离的路程差为两车车长,根据路程差速度差追击时间,可得列车与货车从相遇到相离所用时
6、
甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?
答案与解析:甲、乙相遇后4分钟乙、丙相遇,说明甲、乙相遇时乙、丙还差4分钟的路程,即还差4×(75+60)=540米;而这540米也是甲、乙相遇时间里甲、丙的路程差,所以甲、乙相遇=540÷(90-60)=18分钟,所以长街长=18×(90+75)=2970米。7、
甲、乙、丙三人,甲每分钟走20米,乙每分钟走22.5米,丙每分钟走25米.甲、乙从东镇,丙从西镇,同时相向出发,丙遇乙后10分钟再遇甲,求两镇相距多少米?
答案与解析:由题干可知,丙先与乙相遇,再过10分钟与甲相遇,所以丙与乙相遇时,丙与甲的距离为甲、丙在10分钟内相向而行的路程之和:(20+25)*10=450(米),而这段路程正是从出发到乙、丙相遇这段时间里,甲、乙所行的路程之差.所以从出发到乙、丙相遇所用的时间为:450(22.5-20)=180(分).所以,东、西两镇的距离为:(25+22.5)*180=8550(米)。8、
甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米。甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇。求A、B两地相距多少米?
答案与解析:(40+50)×[(30+50)×10÷(40-30)]=7200(米)9、
甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米。甲、乙两车的速度各是多少?
答案与解析:1120÷(52+4)=20(米)1120÷4=280(米)(280+20)÷2=150(米)(甲速)(280-20)÷2=130(米)(乙速)10、
某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?
答案与解析:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),
某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)
某列车的车长为:20×25-250=500-250=250(米),
两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)11、
兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走______米才能回到出发点。
答案与解析:第一次相遇的时间为:30÷(1.3+1.2)=12(秒);兄妹第十次相遇时走的距离为1.2×12×10=144(米);因144-30×4=24(米),故妹妹离出发点的距离为30-24=6(米)12、
甲,乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?
答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。。。29共15次。13、
在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案与解析:300÷(5-4.4)=500秒,表示追及时间
5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。14、
甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60米。当乙从A处返回时走了lO米第二次与甲相遇。A、B相距多少米?
答案与解析:第一次相遇点距B处60米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距A地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以A、B相距=180-10=170米。15、
两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?
答案与解析:
甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间.乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80*9=720(米),甲距目标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟).
另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900*2(100+80)=10分钟.
16、
两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?
答案与解析:
货车每小时行40千米,客车每小时行50千米
17、
AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案与解析:
解:设全程为1,甲的速度为x乙的速度为y
列式40x+40y=1
x:y=5:4
得x=1/72y=1/90
走完全程甲需72分钟,乙需90分钟
故得解乙到达A地比甲到达B地要晚18分钟。
18、
甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
答案与解析:
解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一
共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米
19、
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点与第一次相遇点之间有()千米。
答案与解析:行完一个全程,甲比乙多行4千米
所以行完两个全程,甲比乙就多行8千米
所以第二次相遇点距离中点4千米(且与第一次的相遇点在中点的异侧)
所以相距2+4=6千米20、
甲乙辆车同时从ab两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求ab两地相距多少千米?
答案与解析:
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
21、
快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
答案与解析:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
时间比为3:4
所以快车行全程的时间为8/4*3=6小时
6*33=198千米
22、
在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案与解析:
两人跑一圈各要6分钟和12分钟。
解:
600÷12=50,表示哥哥、弟弟的速度差
600÷4=150,表示哥哥、弟弟的速度和
(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数
(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数
600÷100=6分钟,表示跑的快者用的时间
600/50=12分钟,表示跑得慢者用的时间
23、
甲乙两人从相距60千米的两地同时相向而行,6小时后相遇。如果,两人的速度各增加1千米,那么几小时相遇?
答案与解析:
5小时
解析:甲乙两人的速度和是60÷6=10千米每小时,增加速度后的速度和为10+2=12千米每小时。
那么相遇时间就是:60÷12=5小时
24、
甲乙两辆汽车的速度分别是每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时候,甲车遇到一辆迎面开来的卡车,又过了1小时,乙车也遇到了这辆卡车。请问,这辆卡车的速度是多少?
答案与解析:
32千米每小时
解析:由题目知,甲和卡车相遇的路程等于乙和卡车相遇时的路程和。
假设卡车的速度是a,甲和卡车相遇是6小时,路程就是6(52+a),乙与卡车相遇用时7小时,路程为7(40+a)。
根据路程相等列式:6(52+a)=7(40+a)
解得a=32
25、
一条河上有相距36千米的上下两个码头,每天定时有甲乙两艘船速相同的客轮分别从两个码头同时出发相向而行。一天甲船从上游码头出发时掉下一物,此物浮于水面顺水漂下,5分钟后,与甲船相距2千米。预计乙船出发后几小时可以与此物相遇?
答案与解析:
1.5小时
解析:此物从甲船上掉下后顺水漂下,与甲船的速度差为甲船在静水中的速度,所以甲船在静水中速度是2000÷5=400米/分,由于甲乙两船速度相同,此物的速度与乙船逆流而上的速度之和为乙船在静水中速度,而二者同时出发,相遇时间为36*1000÷400=90分钟,所以乙船出发后1.5小时能够遇到。
26、
两辆汽车同时从甲,乙两地出发,相向而行,客车每小时行54千米,货车每小时行45千米。相遇时,客车比货车多行36千米,甲地和乙地相距多少千米?
答案与解析:
36÷(54一45)=4(小时)
4×(45+54)
=4×99
=396(千米)
答:甲地和乙地相距396千米。
27、
客车长190米,货车长240米, 两车分别以每秒20米和每秒 23米的速度前进在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
答案与解析:
(190+240)÷(20+23)
=430÷43
=10(秒)
答:从车头相遇到车尾相离共需10秒。
28、
甲乙两地相距243千米,一辆货车和一辆客车同时从甲乙两地出发相向而行,经过一个半小时相遇,如果货车和客车的速度比是四比五,那么客车行完全程要多少小时?
答案与解析:
243÷1.5÷(4+5)
=162÷9
=18(千米)
243÷(18×5)
=243÷90
=2.7(小时)
答:客车行完全程要2.7小时。
29、
小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
答案与解析:
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米)。
30、
甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
答案与解析:
那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差
所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
31、
甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
答案与解析:
想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。
解:18÷(5+4)=2(小时)
8×2=16(千米)
答:狗跑了16千米。
32、
甲、乙两地相距120千米,客车和货车同时从甲地出发驶向乙地,客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇。之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇。已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?
答案与解析:
解:第一次相遇,两车合走2个全程,第二次相遇,两车又比第一次相遇时多走2个全程,∴客车、货车第一次相遇时各自走的路程与第一次相遇到第二次相遇时各自走的路程分别相等。两次相遇都在丙点,设乙丙之间路程为1份,可得甲丙之间路程为2份,∴乙丙间路程=120÷3=40,客车速度为(120+40)÷2=80(千米/小时)
33、
甲乙两车同时从A、B两地相对开出,第一次在离A地95千米处相遇,相遇后继续前进到达目的地后立刻返回,第二次在离B地25千米处相遇,求A、B两地间的距离?
答案与解析:
260千米
解析:有题意知,第一次相遇代表两车行了一个A、B两地间的距离,第二次相遇意味着两车共行了三个A、B两地间的距离。当甲乙两车共行了一个AB之间的距离时,甲行了95千米,当它们共行三个A、B之间的距离时,甲行了3个95千米,即95×3=285千米,这个285千米比A、B之间距离多25千米,可得两地距离为:285-25=260千米。
34、
甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?
答案与解析:
432分钟
解析:甲行驶2.5小时的路程,乙用了3.5小时。所以甲乙的速度比为7:5,走相同路程的时间比是5:7。
那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。
35、
马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙,问再过多少秒后甲、乙两人相遇?
答案与解析:
(1)先把车速换算成每秒钟行多少米?
18×1000÷3600=5(米)
(2)求甲的速度。汽车与甲同向而行,是追及问题,甲行6秒钟的距离=车行6秒钟的距离-车身长。
所以,甲速×6=5×6-15
甲速=(5×6-15)÷6=2.5(米/每秒)
(3)求乙的速度。汽车与乙相向而行,是相向行程问题。乙行2秒的距离=车身长-车行2秒钟的距离。
乙速×2=15-5×2
乙速=(15-5×2)÷2=2.5(米/每秒)
(4)汽车从离开甲到离开乙之间的时间是多少?
0.5×60+2=32(秒)
(5)汽车离开乙时,甲、乙两人之间的距离是多少?
32×5-2.5×32=80(米)
(6)甲、乙两人相遇时间是多少?
80÷(2.5+2.5)=16(秒)
答:再过16秒钟以后,甲、乙两人相遇。
36、
甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。两人的上山速度都是20米/分,下山的速度都是30米/分。甲到达山脚立即返回,乙到达山顶休息30分钟后返回,两人在距山顶480米处再次相遇。山道长多少米?
答案与解析:
37、
甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.
答案与解析:
第一次相遇时,两人合走了半个圆周;第二次相遇时,两人又合走了一个圆周,所以从第一相遇到第二次相遇时 乙走的路程是第一次相遇时走的2倍,所以第二次相遇时,乙一共走了100×(2+1)=300米,两人的总路程和为一周半,又甲所走路程比一周少60米, 说明乙的路程比半周多60米,那么圆形场地的半周长为300-60=240米,周长为240×2=480米.
38、
A、B 是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从 、 两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二 次相遇,那么当甲、乙两人第十二次相遇时,甲跑完几圈又几米?
答案与解析:
甲、乙第一次相遇时共跑圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了100×3=300米,此时甲差60米跑一圈,则可得0.5圈是300-60=240米,所以一圈是480米.第一次相遇时甲跑了240-100=140米,以后每次相遇甲又多跑140×2=280米,所以第十二次相遇时甲共跑了140+280×11=3220:米,即跑了6圈340米.
声明:本文信息来源于网络整理,由网络团队(微信公众号搜索:北京小学学习资料)排版编辑,若有侵权,请联系管理员删除。
扫码添加“家长论坛”微信好友(微信号 16619908263)
获取1-6年级奥数知识点讲解、讲义及奥数竞赛真题、初高中数学竞赛真题
咨询北京小学数学相关课程请拨打电话 16619908263 (同微信号)
没有找到相关结果
0 个回复